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DeepAVP: A Dual-Channel Deep Neural
Network for Identifying Variable-Length

Antiviral Peptides
Jiawei Li, Yuqian Pu, Jijun Tang, Quan Zou , and Fei Guo

Abstract—Antiviral peptides (AVPs) have been experi-
mentally verified to block virus into host cells, which have
antiviral activity with decapeptide amide. Therefore, utiliza-
tion of experimentally validated antiviral peptides is a po-
tential alternative strategy for targeting medically important
viruses. In this article, we propose a dual-channel deep
neural network ensemble method for analyzing variable-
length antiviral peptides. The LSTM channel can capture
long-term dependencies for effectively studying original
variable-length sequence data. The CONV channel can
build dynamic neural network for analyzing the local evo-
lution information. Also, our model can fine-tune the sub-
stitution matrix for specifically functional peptides. Apply-
ing it to a novel experimentally verified dataset, our AVPs
predictor, DeepAVP, demonstrates state-of-the-art perfor-
mance of 92.4% accuracy and 0.85 MCC, which is far better
than existing prediction methods for identifying antiviral
peptides. Therefore, DeepAVP, web server for predicting the
effective AVPs, would make significantly contributions to
peptide-based antiviral research.

Index Terms—Antiviral peptides, dual-channel deep
neural network, web sever.

I. INTRODUCTION

ANTIVIRAL peptides (AVPs) have been experimentally
verified to block virus attachment or the entry of a virus

into host cells [1], [2]. It is just possible that the antiviral peptides
may interfere with key steps that a pathogenic mammalian virus
needs to enter a cell. Antiviral peptides are substantially identical
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to a small portion of a glycoprotein in the virus, which have
antiviral activity against influenza virus with the decapeptide
amide. Over the past decade, the antiviral research has always
been a considerable focus of scientists [3].

Due to the limited availability of therapeutic molecules for
many viral infections, we need to explore new antiviral candi-
dates to control pathogenic re-emerging and resistant viruses [4].
Therefore, experimentally validated antiviral peptides can be
used as a potential alternative strategy for targeting medically
important viruses [5], [6]. In recent years, AVPs prediction
tools collected and predicted highly effective antiviral peptides
via traditional machine learning algorithms. The first AVPs
prediction tool, AVPpred [7], is the collection and prediction
of highly effective antiviral peptides via traditional machine
learning algorithm. Chang KY et al. [8] demonstrated that a
physicochemical model using random forests outperform in dis-
tinguishing antiviral peptides. Zare1 M et al. [9] studied the con-
cept of pseudo-amino acid composition (PseAAC) and utilized
Adaboost to classify antiviral peptides. AntiVPP 1.0 [10] used
the Random Forest algorithm for antiviral peptide predictions,
via net charge, number of hydrogen bond donors, molecular
weight and hydropathy index.

Many studies report highly efficient peptides against hu-
man viruses, e.g. influenza [11], [12], HIV [13], WNV [14],
HCV [15], HSV [16], RSV [17] and etc. Several naturally occur-
ring antimicrobial peptides [18]–[20] have been made in an at-
tempt to identify important functions further contributing to the
antiviral activity, such as Thomas et al. [21], Wang et al. [22], and
some other general antimicrobial peptide prediction tools [23],
[24].

Recently, the learning technology is especially formidable in
handling mass biomedical data and achieves great success in
a wide variety of bioinformatics applications [25]–[31]. With
the advances of big data era in biology, it is foreseeable that
deep learning method becomes increasingly important in the
field of proteomics [32]–[34]. A small amount of deep neural
network models, including the convolutional and recurrent lay-
ers that leverage primary sequence composition, are utilized to
recognize various types of peptides as follows, Veltri [35] for
antimicrobial peptides and Bulik [36] for HLA peptides.

In this paper, we propose a computational method based
on deep neural network for predicting antiviral peptides. Our
model is a dual-channel deep neural network, in order to extract
different dimensional features from original variable-length
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sequence data. The LSTM module imports the peptide sequence
length as an important element to classification the antiviral pep-
tides, and the bi-directional recurrent neural network (BLSTM)
can capture long-term dependency for effectively studying se-
quence data. The CONV module applies the substitution ma-
trix as kernels to extract the convolutional features, and the
dynamic neural network can fine-tune the substitution matrix for
specifically functional peptides. The final joint module concate-
nates the LSTM and CONV channels by two fully-connected
layers, which integrates evidence to classify the antiviral
peptides.

Important characteristic of our model is that we processe
sequence data with no need for feature extraction, whereas the
LSTM and CONV channels can analyze peptide sequences from
sequential and evolutionary levels, respectively. Even more,
the input of our model is variable length sequence, which is
just a peptide with any length range from several residues to
hundred or thousand residues that has great scalability. In the
LSTM channel, we use the state output with time step specific
to sequence length. In the CONV channel, we add AvBlock layer
to do average block on the sequence length PSSM matrix. Our
predictive model has several key competitive advantages rather
than other outstanding prediction tools.

II. MATERIALS AND METHODS

In this study, we analyze variable-length antiviral peptides via
a dual-channel deep neural network ensemble method. On the
one hand, we design a bi-directional recurrent neural network
that extracts the sequence features from one-hot encoding. On
the other hand, we propose a dynamic convolutional neural
network that extracts the evolution features from amino acid
substitution matrix. Final, we construct a dual-channel con-
nection model that integrates the evidence to identify antiviral
peptides. As shown in Fig. 1, we concatenate the LSTM and
CONV channels by two fully-connected layers.

A. Data Set

In our study, we focus on the recognition of antiviral pep-
tides. Here, we evaluate on the well-established dataset, which
is proposed by Nishant et al. [6]. The peptide sequences are
collected with a reported antiviral activity against human viruses
like HIV, HCV, SARS and Influenza, etc. More than 90% of
antiviral peptides are extracted from natural source, and re-
maining peptides have synthetic source. Therefore, 604 highly
effective antiviral peptides and 452 least or non-effective an-
tiviral peptides have been processed by Nishant et al. [6], as
one training set T 544p+407n (544 positive and 407 negative)
and one testing set V 60p+45n (60 positive and 45 negative).
Also, they have taken non-experimental negative peptides, as
one training set T 544p+544n∗ and one testing set V 60p+60n∗. The
negative peptides have been employed in earlier antimicrobial
peptide prediction method [37]. On the real dataset, the positive
and negative samples are all extracted by experimental tech-
nology. However, on the real dataset, the positive samples are
extracted by experimental technology and the negative samples
are collected from existing database. The length distributions

Fig. 1. DeepAVP: deep learning model for identifying variable-length
antiviral peptides.

Fig. 2. Length distributions of two benchmark datasets.

of two benchmark datasets are shown in Fig. 2. On the real
dataset, most of positive peptides are always much shorter than
a lot of negative peptides. However, on the random dataset, the
length distributions between the positive and negative peptides
are exactly similar.

With the development of antiviral peptides (AVPs) re-
search [3], [38], [39], in addition to previous dataset, the AVPs
databases have emerged in large numbers. To update and ex-
pand the AVPs dataset, we extract 916 highly effective antiviral
peptides from four different datasets (AVPdb [40], APD3 [41],
CAMPR3 [42], LAMP [43]) and 452 non-effective antiviral pep-
tides from one database (AVPdb). The homologous sequences
are removed by CD-hit [44] if they shared a high sequence
identity (greater than 90%) with any sequence in the dataset.
Finally, we obtain 413 AVPs and 348 non-AVPs as a novel
non-redundant AVPs dataset.
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Fig. 3. The variable-length bi-directional LSTM channel.

B. LSTM Module

The LSTM module is one bi-directional recurrent neural
network to deal with one-hot encoding, as shown in Fig. 3.

1) Sequence Representation: The one-hot encoding is a
group of bits among which the legal combinations of values are
only those with a single high “1” and all others low “0”. Each
peptide sample consists of one L-length amino acid sequence,
which can be one-hot encoded into the L× 20 binary matrix,
with the column corresponding to 20 amino acid types.

2) Recurrent Neural Network: Long short-term memory
(LSTM) is an artificial recurrent neural network (RNN) archi-
tecture [45], where all connections between units form a directed
cycle. It creates an internal state of the network that allows to
exhibit dynamic temporal or spatial behavior.

Here, we build a bi-directional long short-term memory net-
work (BLSTM), which is a variant of RNN that combines the
outputs of two RNNs, one processing the sequence from left to
right, the other one from right to left. Two RNNs contain some
LSTM blocks, which can remember a value for an arbitrary
length of sequence data. We regard the input sequence length as
the number of time steps, and get the output of final time step in
two directions.

The unit of LSTM is dynamically adjusted by the input
sequence length. Each LSTM unit is comprised of the input
gate, the forget gate and the output gate, the formulation can be
expressed as follows:

ft = σ(Wfxt + Ufbt−1 + bf )

it = σ(Wixt + Uibt−1 + bi)

ot = σ(Woxt + Uobt−1 + bo)

Ct = it ◦ tanh(Wcxt + Ucbt−1 + bc) + ft ◦ Ct−1

ht = ot ◦ tanh(Ct)

(1)

where xt is input vector, ft is forget gate’s activation vector,
it is input gate’s activation vector, ot is output gate’s activation
vector, ht is hidden state vector, Ct is cell state vector, W and
U are parameter matrices and b is a bias vector.

In the LSTM channel, we use the state output with time step
specific to sequence length. Here, we select ht as the output with

Fig. 4. The variable-length dynamic CONV channel.

128 dimensions. Also, we add a dropout layer after the output
to prevent over-fitting, as setting keep-prob as 0.8.

C. CONV Module

The CONV module is a dynamic convolutional neural net-
work to deal with position specific scoring matrix, as shown in
Fig. 4.

1) Evolution Representation: The position specific scoring
matrix (PSSM) is a commonly used representation to reflect
evolution information in biological sequences [46]. For one L-
length sequence, position specific scoring matrix can be denoted
by the L× 20 value matrix as follows:

PSSM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1,1 · · · p1,j · · · p1,20
...

. . .
...

. . .
...

pi,1 · · · pi,j · · · pi,20
...

. . .
...

. . .
...

pL,1 · · · pL,j · · · pL,20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

where pi,j stands for the score that amino acid in i-th position
being turned into the j-th type during the evolution process.

2) Convolutional Neural Network: Convolutional neural net-
work (CNN) is designed to extract features from high-
dimensional data, while keeping the number of model parame-
ters tractable by applying a series of convolutional and pooling
operations.

Here, we build a dynamic convolutional neural network
(DCONV), which is a variant of CNN that the average block
(AvBlock) model is embedded into the convolutional neural
network. It is comprised of the feature extraction layer, the
AvBlock layer and the convolutional layer.

For the feature extraction layer, we initialize twenty 20× 1
convolution kernels by using the 20× 20BLOSUM matrix [47].
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Algorithm 1: AvBlock Model.
1: function AVBLOCK(tensor_ list, width)
2: while ti ∈ tensor_ list do
3: block = length(ti)/width
4: for s = 1 : width do
5: nti(s)

= avg{ti[block × (s− 1) + 1, block × s]}
6: end for
7: new_ tensor_ list.add(nti)
8: end while
9: return new_ tensor_ list

10: end function

We may not use traditional technology [48], but build neural
network model to construct position specific scoring matrix, the
formulation can be expressed as follows:

Evo(X)i,k =

M−1∑
m=0

N−1∑
n=0

W k
m,nXi+m,n (3)

where X is the input data, i is the index of positions and k is
the index of kernels. Each convolution kernel W k is an M ×
N weight matrix with M being the window size and N being
the number of input channel, where M = 1 and N = 20. In
addition, fine-tuned BLOSUM matrix can be trained out that
differs from original BLOSUM matrix.

For the AvBlock layer, we make the variable evolution data
into fixed-length features. The AvBlock model can dynamically
produce the block according to input length, and compute the
average in each block, as shown in Algorithm 1.

For the convolutional layer, we apply a convolution operation
to above blocks, the formulation can be expressed as follows:

ConV (X)i,k = ReLU

{
M−1∑
m=0

N−1∑
n=0

W k
m,nXi∗step+m,n

}
(4)

where M = 4 and N = 4, the step equals to 4, and the ReLU
represents rectified linear function as follows:

ReLU(x) =

{
x x ≥ 0
0 x < 0

(5)

In the CONV channel, we use the AvBlock layer with space
specific to sequence length. Here, we obtain the output with 100
dimensions. Also, we add a dropout layer after the output to
prevent over-fitting, as setting keep-prob as 0.8.

D. Joint Module

The joint module takes concatenated last hidden vectors as
input, and constructs two fully-connected layers and one softmax
layer to identify antiviral peptides.

For two fully-connected layers with 100 and 2 neurons, the
logits can come about by nonlinear combination of sequence
and evaluation features. The formulation can be expressed as
follows:

fulCN(X) = ReLU(WX + b) (6)

where X is the features vector, W is a M ×N weight matrix
and b is a N -dimension bias vector.

For one softmax layer, the un-normalized vector can be nor-
malized into a probability distribution. The standard (unit) soft-
max function is given by standard exponential function on each
coordinate, divided by sum of all coordinates as a normalizing
constant. The formulation can be expressed as follows:

softmax(Xi) =
expXi∑K

k=0 expXk

(7)

whereX represents given logits vector, i is the index of positions
and K equals to 2, output coordinates sum to 1.

Final, we identify most likely choice with maximum predic-
tion probability as the prediction label.

E. Model Training and Validation

We split the training set via five folds, and select one fold as the
validation set. Our novel deep learning model is trained on four
folds and verified on one fold, in order to save the best model on
the validation set. We calculate the softmax cross entropy as loss
function, and perform the Adam algorithm [49] to minimize loss
function and optimize the model. Here, we set learning_rate
as 0.01. Therefore, our model is fitted on the four-fold training
set, hyper-parameters are optimized on the one-fold validation
set, and the final performance and interpretation are exclusively
reported on the test set.

III. RESULTS AND DISCUSSION

In this section, we employ three benchmark datasets to evalu-
ate our deep learning method. First, we analyze the performance
of different modules to test the robustness of our method. Then,
our method is compared with other outstanding methods under
the independent test on well-established dataset. Finally, we
analyze fine-tuned BLOSUM matrix that differs from original
matrix in some details.

A. Evaluation Criteria

Specificity (SP), Sensitivity (SN), Accuracy (ACC) and
Matthew’s correlation coefficient (MCC) are employed to eval-
uate the performance of our method. They are calculated as
follows:

SN =
TP

TP + FN
× 100

SP =
TN

TN + FP
× 100

ACC =
TP + TN

TP + FP + TN + FN
× 100

MCC =
TP × TN − FP × FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)
(8)

where Sn reflects the sensitivity, Sp reflects the specificity, Ac

reflects the accuracy and MCC is the Mathew’s correlation
coefficient; while TP represents the true positive, TN repre-
sents the true negative, FP represents the false positive and
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Fig. 5. Composition analysis of AVPs and Non-AVPs.

Fig. 6. Positional conservation Logo of three residues at N-terminal
and C-terminals in AVPs against Non-AVPs.

FN represents the false negative. Sn, Sp and Ac stand for
the success rates of prediction on positive, negative and overall
datasets, respectively.MCC is used to evaluate the performance
of predictor when the positive and negative samples in the dataset
are out-of-balance. Its value ranges from 0 to 1 and a larger
MCC means a better prediction.

In addition, Area Under Receiver Operating Characteristic
(ROC) curve (AUC) and Area Under Precision Recall (PR) curve
(AUPR) are used to evaluate the performance of our method.
AUC is the area under receiver operating characteristic (ROC)
curve, which is created by plotting true positive rate against false
positive rate at various threshold settings. AUPR is the area under
curve that is created by plotting precision against recall at various
threshold settings.

B. Composition Analysis

To carry out the composition analysis of AVPs and Non-AVPs,
we calculate the frequencies of all amino acids in the positive
and negative datasets, as shown in Fig. 5. The analysis of AVPs
reveals higher abundance of E, I , L, K and W (Welch’s t-test,
p value less than 0.05). Similarly, for NAIEs, G, T , Y and V are
observed in higher abundance (Welch’s t-test, p value less than
0.05).

The positional conservation of amino acids in AVPs and Non-
AVPs is examined by using a two sample logo (TSL) analysis,
as shown in Fig. 6. W and L are found as highly conserved at
N-terminal of AVPs, whereas, F and K are found at C-terminal
of AVPs. In contrast,P andN are highly conserved at N-terminal
of Non-AVPs, whereas, P is conserved at C-terminal of Non-
AVPs.

C. Analysis of LSTM Module

We analyze three different LSTM models: the single direc-
tional LSTM (UnidLSTM), the bi-directional LSTM (BidL-
STM) and the multi-layer LSTM (MultiLSTM). The single

TABLE I
PERFORMANCE OF THREE LSTM MODELS ON THE REAL DATASET

directional LSTM model is comprised of a single hidden LSTM
layer followed by a standard feed-forward output layer. The
multi-layer LSTM is an extension to this model that has multiple
hidden LSTM layers where each layer contains multiple memory
cells. Here, we add two fully-connected layers, and use the cross-
entropy as loss function to optimize defined model. Because of
variable-length peptides, we put in the L× 20 binary matrix for
each sequence sample. The recurrent neural network decides the
LSTM cell cycle-index according to sequence length.

We compare the performance of three LSTM models on the
real dataset as training set T 544p+407n and testing set V 60p+45n.
During 5-fold cross validation, all three LSTM models are
made on the training set T 544p+407n. As shown in Table I,
UnidLSTM achieves best performance with 84.2% accuracy and
0.68 correlation; BidLSTM performs well with 83.5% accuracy
and 0.66 correlation; MultiLSTM has 83.0% accuracy and 0.65
correlation. During independent evaluation, all three LSTM
models are made on the testing set V 60p+45n. As shown in
Table I, UnidLSTM and MultiLSTM achieve the performance
with 81.9% accuracy and 0.63 correlation. However, BidLSTM
performs outstanding with 85.7% accuracy and 0.71 correlation.
This suggests that it may be better to choose BidLSTM as
the sequence module in our method for the antiviral peptide
prediction.

D. Analysis of CONV Module

We analyze four different CONV models: the dynamic CONV
with original BLOSUM (DynEvo), the dynamic CONV with
original PHYSICO (DynPhy), the static CONV with original
BLOSUM (StaEvo), the static CONV with original PHYSICO
(StaPhy). In the dynamic model, the convolutional neural net-
work can change according to sequence length. In the static
model, it can only deal with fixed-length sequence. Here, we
add two fully-connected layers, and use the cross-entropy as loss
function to optimize defined model. Moreover, we use evolution
kernel (BLOSUM) [47] and physicochemical property kernel
(PHYSICO) [50].

We compare the performance of six CONV models on the
real dataset as training set T 544p+407n and testing set V 60p+45n.
During 5-fold cross validation, all four CONV models are made
on the training set T 544p+407n. As shown in Table II, DynEvo
and StaEvo perform well with 77.1%–77.7% accuracy and
0.53–0.55 correlation. During independent evaluation, all four
CONV models are made on the testing set V 60p+45n. As shown
in Table II, DynEvo and DynPhy achieve best performance
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TABLE II
PERFORMANCE OF SIX CONV MODELS ON THE REAL DATASET

TABLE III
PERFORMANCE OF TWO JOINT MODELS ON TWO BENCHMARK DATASETS

with 81.0%–83.8% accuracy and 0.61–0.67 correlation. This
suggests that it may be better to choose the dynamic model with
BLOSUM kernel as evolution module in our method for the
antiviral peptide prediction.

E. Performance of Joint Module

We analyze two different dual-channel deep neural network
ensemble models: the joint model with BLOSUM (DeepEvo)
and the joint model with PHYSICO (DeepPhy). Here, we pro-
duce the joint modules via training CONV channel by evolu-
tion model (BLOSUM) and physicochemical property model
(PHYSICO).

We compare the performance of dual-channel model on the
real dataset (training set T 544p+407n and testing set V 60p+45n)
and the random dataset (training set T 544p+544n∗ and testing set
V 60p+60n∗). During 5-fold cross validation, two joint models
are made on the training sets T 544p+407n and T 544p+544n∗. As
shown in Table III, DeepEvo achieves best performance with
83.5% accuracy and 0.66 correlation on T 544p+407n, and 90.1%
accuracy and 0.80 correlation on T 544p+544n∗. However, Deep-
Phy performs well with 83.0% accuracy and 0.65 correlation
on T 544p+407n, and 88.5% accuracy and 0,77 correlation on
T 544p+544n∗. During independent evaluation, two joint models
are made on the testing setsV 60p+45n and V 60p+60n∗. As shown
in Table III, DeepEvo achieves best performance with 87.6%
accuracy and 0.75 correlation on T 60p+45n, and 93.3% accuracy
and 0.87 correlation onT 60p+60n∗. However, DeepPhy performs
well with 80.0% accuracy and 0.59 correlation onT 60p+45n, and
89.2% accuracy and 0,78 correlation on T 60p+60n∗. This proves
once more that it may be better to choose the CONV channel
with BLOSUM for building dual-channel model in our method
for the antiviral peptide prediction.

Fig. 7. The ROC and PR curves of two joint models on two benchmark
datasets.

Also, we compare ROC and PR curves of dual-channel deep
neural network ensemble model on two benchmark datasets, as
shown in Fig. 7. On the real dataset, DeepEvo performs well with
0.9389 AUC and 0.9411 AUPR, but DeepPhy has 0.8515 AUC
and 0.8927 AUPR. On the random dataset, DeepEvo achieves
best performance with 0.9642 AUC and 0.9726 AUPR, but
DeepPhy has 0.9231 AUC and 0.9474 AUPR. This denotes that
the evolution information is much better to describe the antiviral
peptides rather than physicochemical property.

F. Fine-Tuned Kernel on CONV Channel

On CONV channel, we train out fine-tuned BLOSUM and
PHYSICO kernels from original matrices, such as BLOSUM*
and PHYSICO*. The fine-tuned BLOSUM and PHYSICO ker-
nels are obtained from the output of first convolutional layer of
the dynamic CONV with original BLOSUM (DynEvo) and the
dynamic CONV with original PHYSICO (DynPhy). Therefore,
we use fine-tuned matrix to initialize first convolutional layer of
the CONV module. As above, accuracy of StaEVO with fine-
tuned BLOSUM matrix is better than accuracy of StaEVO with
original BLOSUM matrix. Similarity, accuracy of StaPhy with
fine-tuned PHYSICO matrix is better than accuracy of StaPhy
with original PHYSICO matrix. It demonstrates that fine-tuned
matrix is suitable to the benchmark dataset. As shown in Fig. 8,
fine-tuned BLOSUM matrix differs from original BLOSUM
matrix on several individual amino acid substitutional relations,
but fine-tuned PHYSICO matrix differs from original PHYSICO
matrix on some physicochemical properties for the vast majority
of amino acids. This implies that fine-tuned PHYSICO matrix
on CONV channel may have overfitting problem.

G. Comparison With Existing Predictors on the
Nishant’s Dataset

We compare our method, DeepAVP, with recent antivi-
ral peptide prediction methods, such as AVPpred [7], Chang
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Fig. 8. Difference of original and fine-tuned matrices of BLOSUM and PHYSICO on CONV channel.

TABLE IV
COMPARISON OF OUR METHOD (DEEPAVP) WITH RECENT ANTIVIRAL

PEPTIDE PREDICTION METHODS ON INDEPENDENT EVALUATION

KY(RF) [8], Zare M(Adaboost) [9] and AntiVPP 1.0 [10].
During independent evaluation, above methods are tested on the
real dataset (training set T 544p+407n and testing set V 60p+45n)
and the random dataset (training set T 544p+544n∗ and testing set
V 60p+60n∗).

As shown in Table IV, DeepAVP achieves best performance
with 87.6% accuracy and 0.75 correlation on the real dataset
(T 60p+45n), and 93.3% accuracy and 0.87 correlation on the
random dataset (T 60p+60n∗). However, AVPpred performs well
with 85.7% accuracy and 0.71 correlation on T 60p+45n, and
92.5% accuracy and 0.85 correlation on T 60p+60n∗; Chang
KY(RF) performs well with 86.7% accuracy and 0.73 corre-
lation on T 60p+45n, and 92.5% accuracy and 0.85 correlation
on T 60p+60n∗; Zare M(Adaboost) performs well with 87.0%
accuracy and 0.75 correlation on T 60p+45n∗. AntiVPP performs
well with 93.0% accuracy and 0.87 correlation on T 60p+60n∗.
This proves that dual-channel deep neural network ensemble
model incorporates some unique features to outperform other
methods for the antiviral peptide prediction.

H. Comparison With Existing Predictors on the
Novel Dataset

We compare DeepAVP and AVPpred on the novel non-
redundant AVPs dataset (413 AVPs and 348 non-AVPs); how-
ever, other three antiviral peptide prediction methods did not
provide effective online service tools. As shown in Table V,
DeepAVP achieves best performance with 92.4% accuracy and
0.85 correlation on the novel dataset. However, AVPpred per-
forms well with 87.6% accuracy and 0.76 correlation on the

TABLE V
COMPARISON OF DEEPAVP AND AVPPRED ON THE NOVEL DATASET

novel dataset. This proves that dual-channel deep neural net-
work ensemble model may have a strong competitive edge in
identifying antiviral peptides on the non-redundant data.

IV. CONCLUSION

We report DeepAVP, a computational approach based on
dual-channel deep neural network for modeling the source
of peptide antiviral variability. It constructs recurrent neural
network and convolutional neural network side-by-side, rec-
ognizing all original variable-length sequence data. Applying
it to the experimentally verified dataset, our highly adaptable
predictor, DeepAVP, demonstrates state-of-the-art performance
in identifying antiviral peptides.

Important characteristic of our model is that we processe
sequence data with no need for feature extraction, whereas
LSTM and CONV channels can analyze peptide sequences
from sequential and evolutionary levels, respectively. Tradi-
tional method generally separates feature extraction from learn-
ing model, which leads to become a more labor-intensive task,
because we cannot know in advance whether this feature ex-
traction method is beneficial to current model. However, if we
embed feature extraction into the neural network model, which
can be optimized when training the learning model, which seems
to have more rationality.

Furthermore, the PSSM feature extraction layer in the CONV
channel can transform original BLOSUM matrix into specific
evolutionary substitution matrix for antiviral peptides. We can
also use this strategy to generate refined BLOSUM matrix in
order to fit different peptide sequence learning task. In the
future, we can use the concept of dynamic neural network to
combine more feature extraction methods with various deep
neural network models. It is very interesting that we will be
able to perform feature extraction more effectively.
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