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Abstract

Quantifying DNA properties is a challenging task in the broad field of human genomics. Since the vast majority of
non-coding DNA is still poorly understood in terms of function, this task is particularly important to have enormous benefit
for biology research. Various DNA sequences should have a great variety of representations, and specific functions may focus
on corresponding features in the front part of learning model. Currently, however, for multi-class prediction of non-coding
DNA regulatory functions, most powerful predictive models do not have appropriate feature extraction and selection
approaches for specific functional effects, so that it is difficult to gain a better insight into their internal correlations. Hence,
we design a category attention layer and category dense layer in order to select efficient features and distinguish different
DNA functions. In this study, we propose a hybrid deep neural network method, called DeepATT, for identifying 919
regulatory functions on nearly 5 million DNA sequences. Our model has four built-in neural network constructions:
convolution layer captures regulatory motifs, recurrent layer captures a regulatory grammar, category attention layer selects
corresponding valid features for different functions and category dense layer classifies predictive labels with selected
features of regulatory functions. Importantly, we compare our novel method, DeepATT, with existing outstanding prediction
tools, DeepSEA and DanQ. DeepATT performs significantly better than other existing tools for identifying DNA functions, at
least increasing 1.6% area under precision recall. Furthermore, we can mine the important correlation among different DNA
functions according to the category attention module. Moreover, our novel model can greatly reduce the number of
parameters by the mechanism of attention and locally connected, on the basis of ensuring accuracy.

Key words: DNA function; deep neural network; category attention

Introduction
Identifying functions of DNA sequences is a major chal-
lenge in the broad field of human genomics. Non-coding
genetic variations constitute the majority of diseases; however,
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characterizing their functional effects remains a major chal-
lenge. Transcription factor (TF) binding sites are influenced by
cofactor binding sequences, chromatin accessibility and struc-
tural flexibility of binding site DNA [1]. DNase I-hypersensitive
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sites (DHSs) and histone marks are expected to have even more
complex underlying mechanisms, involving multiple chromatin
proteins [2, 3]. The regulatory sequence information for non-
coding variant function prediction is particularly important to
have enormous benefits for functional genomics.

Nowadays, how to identify functional effects of large-scale
chromatin-profiling data on TF binding, DNase I sensitivity
and histone-mark profile of DNA sequences is of great
significance in the current biology research. DeepSEA [4]
proposed converlutional neuron network (CNN) for predicting
effects of non-coding variants across multiple cell types. It
only captures regulatory motifs in order to learn tissue-specific
functions. DanQ [5] employed a hybrid convolutional and
recurrent deep neural network (DNN) for quantifying DNA
functions. It captures both regulatory motifs and the regulatory
grammar. High-throughput genome sequencing data have
prompted the development of novel bioinformatics tools that
can integrate the large and feature-rich dataset. Thus, it can be
seen that the deep learning technology is especially formidable
in handling mass biomedical data and also achieves great
success in a wide variety of human genomics applications.

Deep learning models are attractive and effective in
identifying complex patterns from feature-rich data [6]. DNNs
have already been adapted for some genomics problems, such
as motif discovery [7], deleteriousness prediction of genetic
variants [8], gene expression inference [9], DNA/RNA sequence
binding specificities [10], DNA methylation detection [11],
enhancers prediction [12] and RNA subcellular [13]. CNNs are
one variant of DNNs being appropriate for this task [14]. CNNs
use a weight-sharing strategy to capture local patterns in initial
data such as genome sequences. This weight-sharing strategy
is especially useful for studying DNA sequences because the
convolution filter can capture sequence motifs with short
and recurring patterns that are presumed to have a biological
function. Recurrent neural networks (RNNs) are another variant
of DNNs that capture sequence information through the directed
connection between RNN units. This creates an internal state
of network that allows to exhibit dynamic temporal or spatial
behavior. Here, biRNNs [15] combine outputs of two RNNs,
one processing the sequence from left to right, the other one
from right to left. Instead of regular hidden units, two RNNs
containing LSTM blocks are smart network units that can
remember a value for various length of time [16]. One more
important variation of DNNs is the attention mechanism [17]
that was inspired by the brain signal processing mechanism for
human. It can quickly screen out high-value information from
a large amount of initial data using limited attention resources.
What is more, it can solve the long-term dependency problem in
the RNN. Self-attention [18] is a general form of attention mech-
anism. We integrate the self-attention module and make some
modification to solve DNA multi-label classification problem.

In this study, we propose a hybrid DNN method, called
DeepATT, for identifying non-coding DNA sequence regulatory
functions. Many various DNA functions should have corre-
sponding different representations. However, most powerful
predictive models do not have specific analysis for DNA
functions. Therefore, we design a category attention layer
and a category dense layer in order to select corresponding
features and distinguish specific representations of different
DNA functions. Our DNN framework has four built-in neural
network constructions, including CNN, bi-direction long-term
memory RNN, category attention neural network and category
dense neural network. According to the category attention layer,
we can mine the correlation among different non-coding DNA

functions. We compare different DNN constructions in various
hyper-parameters, which are implemented or replicated on our
own platform. Also, our novel method is compared with the
original results of existing outstanding prediction tools.

Materials and methods
In this study, we analyze DNA sequences to predict regulatory
functions through our novel hybrid DNN method, called Deep-
ATT. We implement a DNN framework with four built-in neural
network constructions, including CNN, bi-direction long-term
memory RNN, category attention neural network and category
dense neural network. The framework of our DNN model is
shown in Figure 1.

Dataset

We apply DeepATT on the same dataset as DeepSEA and DanQ.
The human GRCh37 reference genome was segmented into non-
overlapping 200 bp bins for training and evaluating chromatin
feature prediction performance. Targets were computed by inter-
secting 919 ChIP-seq and DNase-seq peak sets from uniformly
processed ENCODE [19] and Roadmap Epigenomics [20] data
releases. It yields a length 919 binary target vector for each
sample, which consists of a 1000 bp sequence centered on each
200 bp bin overlapping at least one TF binding peak.

Training, validation and testing sets were downloaded from
DeepSEA website. Samples were stratified by chromosomes into
strictly non-overlapping training, validation and testing sets.
The predicted probability for each sequence was computed as
average of probability predictions for the forward and com-
plementary sequence pairs. Reverse complements effectively
double the size of dataset. There are 4 400 000 sequences in the
training set, 8000 sequences in the validation set and 455 024
sequences in the test set. Each 1000 bp DNA sequence is repre-
sented by a 1000 × 4 binary matrix, with columns corresponding
to A, G, C and T.

Novel model architecture

Our DNN framework has four built-in neural network con-
structions, including CNN, bi-direction long-term memory RNN,
category attention neural network and category dense neural
network. The convolution layer captures regulatory motifs, and
the recurrent layer captures a regulatory grammar. Furthermore,
the category attention layer captures corresponding valid
feature representations for different DNA functions, and
category dense layer classifies predictive labels with feature
vectors selected by query vectors of different non-coding DNA
functions. We propose two novel model constructions, DeepATT
and DeepATT_Plus, on the basis of different weight modes in
category dense layer.

CNN module

CNN [14] is designed to extract features from high-dimensional
data, while keeping the number of model parameters tractable
by applying a series of convolutional and pooling operations.

Here, we apply a convolution operation to above one-hot
encoding representation, the formulation can be expressed as
follows:

ConV(X)i,k = ReLU

{
M−1∑
m=0

N−1∑
n=0

Wk
m,nXi∗step+m,n

}
, (1)
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Figure 1. DeepATT: a hybrid DNN model for identifying functions of DNA sequences. Our deep learning model has four built-in neural network constructions:

convolution layer captures regulatory motifs, recurrent layer captures a regulatory grammar, category attention layer selects corresponding valid features for different

functions and category dense layer classifies predictive labels with selected features of regulatory functions.

where X is one-hot encoding input data, W is weight matrix, M =
30 and N = 4 and the step equals to 1.

The ReLU represents rectified linear function as follows:

ReLU(x) =
{

x x ≥ 0
0 x < 0

. (2)

Furthermore, we add a max-pooling layer after the convolu-
tional layer and also apply the dropout regularization technique.
Dropout is a technique where randomly selected neurons are
ignored during training. This means that their contribution to
the activation of downstream neurons is temporally removed
on the forward pass and any weight updates are not applied
to neurons on the backward pass. Functional effect is that the
network becomes less sensitive to specific weights of neurons.
This, in turn, results in a network that is capable of better
generalization and is less likely to over-fit the training data. Here,
keep-prob can be used as probability of keeping a neuron active
during dropout.

The outputs of this module are 64 CNN vectors with 1024
dimensions. Also, we add a dropout layer after the output to
prevent the over-fitting, as setting the keep-prob as 0.2.

RNN module

Long short-term memory (LSTM) [15] is an artificial RNN archi-
tecture [16], where connections between units form a directed
cycle. It creates an internal state of the network that allows to
exhibit dynamic temporal or spatial behavior.

Here, we build a bi-directional LSTM network, which is a
variant of RNN combining outputs of two RNNs, one processing
the sequence from left to right, the other one from right to left.
Two RNNs contain some LSTM blocks, which can remember a
value for an arbitrary length of sequence data. We get the fixed
length output of time steps in two directions and merge the
output of two directions to one feature vector.

The unit of LSTM is dynamically adjusted by the input
sequence length. Each LSTM unit is comprised of the input gate,
the forget gate and the output gate; the formulation can be
expressed as follows:

ft = σ (Wf xt + Uf bt−1 + bf ) (3)

it = σ (Wixt + Uibt−1 + bi) (4)

C̃ = tanh(Wcxt + Ucbt−1 + bc) (5)

Ct = it ◦ C̃t + ft ◦ Ct−1 (6)

ot = σ (Woxt + Uobt−1 + bo) (7)

ht = ot ◦ tanh(Ct) (8)

where W and U are parameter matrices and b is a bias vector, x is
the input at that particular time step, C is the cell state, h is the
hidden state from previous cell or the output of previous cell, f
is forget gate, i is input gate and o is output gate.

The outputs of this module are 64 RNN vectors with 1024
dimensions.

Category-attention neural network module

Self-attention mechanism [18] is built to extract global infor-
mation by query, key and value form. It can solve long-term
dependence problem. The attention mechanism is an improve-
ment over the encoder–decoder-based neural machine transla-
tion system in natural language processing and other applica-
tions.

Here, we propose category-attention neural network (ATT)
improved from the self-attention mechanism. We create cate-
gory query code with a 919 × 919 diagonal matrix to represent
the 1st stage query vector of 919 non-coding DNA sequence
functions, generate the 2nd stage query vector by the linear
transformation from the 1st stage query vector and achieve the
multi-head attention to capture more complicated information.
The multi-head attention mechanism is just split the 2nd stage
query, key and value vectors into multiple pieces. Different heads
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can pay attention to different kinds of information from various
presentation spaces.

The self-attention layer has three inputs including query, key
and value vectors; the formulation can be expressed as follows:

qi = Wqai
q

ki = Wkai
k

vi = Wvai
v

(9)

α1,i = q1 · ki/
√

d (10)

â1,i = exp
(
α1,i

)
/�j exp

(
α1,j

)
(11)

b1 =
∑

i

â1,ivi (12)

where q is the 1st stage query vector, k is the key vector and v is
the value vector, α is scaled dot-product attention, a is softmax
of predefined alignment score and b is context vector for output.

For the category attention layer, vectors of q, k and v are
generated from different inputs. The 1st stage query vector is
a 919 × 919 diagonal matrix. The 2nd stage query vector is
generated by linear transformation with weights from the 1st
stage query vector. The value and key vectors are the same as
above RNN vectors. We split query vector to four heads.

The outputs of this module are 919 ATT vectors with 400
dimensions. Also, we add a dropout layer after the output to
prevent the over-fitting, as setting the keep-prob as 0.2.

Category-dense neural network module

Locally connected dense layer produces each output vector at
each different patch of the input. We can just regard it as
multiple dense layers with different inputs.

Here, we propose category dense neural network improved
from the locally connected dense layer. We assign 919 dense lay-
ers to 919 ATT vectors, respectively. Also, there are two category
dense modes, such as shared weight mode and unshared weight
mode. For shared weight mode, different dense layers have the
same weight. For unshared weight mode, different dense layers
have different weights.

The normal dense neural network comes about by the non-
linear combination of all extracted features, formulation can be
expressed as follows:

Dense(X) = ReLU(WX + b), (13)

where W is a weight matrix and b is a bias vector.
Then, we use the sigmoid output layer to obtain different

probabilities of 919 non-coding DNA functions. The prediction
is scaled into the 0-1 range by the sigmoid function, formulation
can be expressed as follows:

Sigmoid(x) = 1
1 + e−x

. (14)

Different model architectures

The DNN model is organized by a sequential layer-by-layer struc-
ture executing a sequence of functional transformation. Here,
we replicate two state-of-the-art models including DeepSEA and
DanQ. We compare different model architectures with our novel
model DeepATT. Three constructions are shown in Figure 2.

Figure 2. Different DNN constructions of DeepSEA, DanQ and DeepATT. DeepSEA

has three convolution-pooling layers and two dense layers; DanQ has convolu-

tional layer, bi-directional recurrent layer and two dense layers; DeepATT has

convolutional layer, bi-directional recurrent layer, category attention layer and

category dense layer.

DeepSEA

We replicate the neural network framework of DeepSEA [4] that
is put forward to predict effects of non-coding variants across
multiple cell types. It consists of three convolution-pooling lay-
ers and two dense layers in series, where the convolutional layer
can capture regulatory motifs in order to learn tissue-specific
functions. Three convolutional layers extract sequence features
at different spatial scales, followed by two dense layers that
can integrate information from all features extracted by front
layers. In this model, we also use the regularization terms to
prevent over-fitting, including dropout, L1 regularization and L2
regularization.

DanQ

We also replicate the neural network framework of DanQ and
DanQ-JASPAR [5], which are hybrid convolutional and recurrent
DNNs for quantifying DNA functions.

For DanQ model, it includes convolutional layer, bi-directional
recurrent layer and two dense layers, which can capture both
regulatory motifs and the regulatory grammar. A convolution
layer with rectifier activation acts as a motif scanner across
the input matrix as DeepSEA model. However, there is only
one convolutional layer in DanQ model, which is different
from DeepSEA model. The subsequent bi-LSTM layer considers
orientations and spatial distances between various motifs.

For DanQ-JASPAR model, we just change the kernel number
of convolution layer into 1024 and half of these kernels are
initialized with known motifs from JASPAR [21].

Loss function

We utilize two loss functions to train the model. One is the binary
cross entropy loss (NLL Loss), and the other one is focal loss.

BCE loss:

BCE =
{

− log
(
y′) y = 1

− log
(
1 − y′) y = 0

, (15)

where y = ytruth ∈ {0, 1} and y′ = ypred ∈ [0, 1].
Focal loss:

Focal =
{

−α
(
1 − y′)γ log y′ y = 1

−(1 − α)y′ log
(
1 − y′) y = 0

, (16)

where y = ytruth ∈ {0, 1}, y′ = ypred ∈ [0, 1], the balancing
parameter α ∈ (0, 1) and the focusing parameter γ > 0.
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It is worth noting that, focal loss is more concerned with
samples that are difficult to classify and less concerned with
samples that are easy to classify, which makes the proportion of
difficult-to-classify samples increased. Furthermore, focal loss
introduces the balance factor to solve the problem of imbalance
between (0, 1) labels.

Model training and validation

All models are implemented by using Tensorflow-2.0 framework
[22]. Moreover, we use GTX-2080ti to train our models. The
dataset consists of training set, validation set and independent
test set. We calculate the sigmoid output for 919 labels and per-
form the Adam algorithm [23] to minimize loss function. Here,
we set learning rate and add a learning rate scheduler. Above
of all, our model is fitted on the training set, hyper-parameters
are optimized on the validation set and final performance and
interpretation are exclusively reported on the independent test
set. Because of the model complexity and the large amount of
data, it takes 1–2 h for an epoch and 1–2 days for each model. In
this study, we have trained 28 models to compare the predictive
performance, which takes about 1 month to get experimental
results.

Results
In this section, we evaluate DeepATT with other existing deep
learning models in the same platform. And also, we analyze the
learned motif in the convolution layer and the trained 2nd stage
query vector in the category attention layer, in order to mine
the correlation among 919 DNA non-coding regulatory functions.
Furthermore, we compare the performance of DeepATT with
original DeepSEA and DanQ.

Evaluation criteria

We calculate two metrics to evaluate the performances of differ-
ent models on the test set, which is the same as DeepSEA and
DanQ. One is the area under receiver operating characteristic
curve (AUROC) and another is the area under precision recall
(AUPR) curve. AUROC is the area under receiver operating charac-
teristic (ROC) curve, which is created by plotting true positive rate
against false positive rate at various threshold settings. AUPR is
the area under curve that is created by plotting precision against
recall at various threshold settings. Moreover, the AUPR statistic
is a much more balanced metric than the AUROC statistic to
assess performance, due to the massive class imbalance. More-
over, AV-AUROC and AV-AUPR perform overall values of AUROC
and AUPR for 919 binary targets.

AUROC and AUPR provide more comprehensive and alterna-
tive measures for machine learning algorithms by being more
adaptive to selected decision criterion and prior probabilities.
Therefore, as same in previous methods, we choose these two
metrics to evaluate the performance of different models.

Performance of various architectures

We compare the performance of five different model architec-
tures with different hyper-parameters. We replicate the neural
network framework of three existing models on our own plat-
form, including DeepSEA, DanQ and DanQ-JASPAR. It needs to
be noted that we only compare the performance of our model
architectures to three existing neural network frameworks, not
from previous literatures. DeepSEA [4] utilized CNN with three

convolution layers and two dense layers. DanQ [5] built a hybrid
convolutional and recurrent DNN with convolutional layer, bi-
directional recurrent layer and two dense layers. DanQ-JASPAR
only modified the convolutional layer from 512 kernels to 1024
kernels. Our DNN method has four built-in neural network con-
structions: convolution layer, recurrent layer, category attention
layer and multiple category dense layers. DeepATT uses shared
weight mode to build two category dense layers. DeepATT_Plus
uses shared weight mode to build first category dense layer and
uses unshared weight mode to build last category dense layer.
The performance of five models are implemented or replicated
on our own platform with different loss function, learning rate
and scheduler.

Settings of hyper-parameters

We regard learning rate, learning rate scheduler and loss func-
tion as hyper-parameters. We discover the influence of these
hyper-parameters on five model architectures. We improve the
performance of different models through adjusting the learning
rate and the learning rate scheduler, as shown in Table 1. It is
worth noting that DeepATT can achieve the best performance
with 0.39619 AV-AUPR and 0.94486 AV-AUROC on BCE loss, and
0.39522 AV-AUPR and 0.94519 AV-AUROC on focal loss, under
same hyper-parameter settings 0.0005 learning rate and StepLR
scheduler. Above all, comparison results demonstrate that small
learning rate, StepLR learning rate scheduler and focal loss func-
tion can achieve better performance in most cases.

Numbers of parameters

More importantly, we compare the number of parameters for
each neural network layer on our two novel models and three
existing models, as shown in Table 2. DeepATT can reduce the
number of parameters by the mechanism of attention, locally
connected and weight-sharing strategy, from 10 million to mil-
lion. The way to achieve this is that the attention mechanism
determines relevant characteristics for each binary target and
then the locally connected layer eliminates all unnecessary con-
nections for each specific binary target. We can take advan-
tage of shared weights; let each local connection share same
weights, which greatly reduces the amount of weights. Actu-
ally, the local connection and sharing parameters are two main
reasons for decreasing the number of parameters. However,
DeepATT_Plus does not use weight-sharing strategy in the last
layer that increases the number of parameters and causes the
over-fitting phenomenon.

AUROC and AUPR

We analyze overall performance of five different models under
various hyper-parameters, as shown in Figure 3. DeepSEA can
achieve the best result with 0.29214 AV-AUPR and 0.90847 AV-
AUROC via BCE loss. DanQ can get the best result with 0.35921
AV-AUPR and 0.93399 AV-AUROC via BCE loss. However, DanQ-
JASPAR can get the best result with 0.38441 AV-AUPR and 0.94171
AV-AUROC via focal loss. In addition, focal loss can improve the
performance of DanQ-JASPAR for all learning rates. DeepATT can
obtain the best result with 0.39522 AV-AUPR and 0.94519 AV-
AUROC, via 0.0005 learning rate, StepLR scheduler and focal loss.
DeepATT_Plus can obtain the best result with 0.39324 AV-AUPR
and 0.94432 AV-AUROC via BCE loss. It is noted that, small learn-
ing rate and StepLR scheduler can improve the performance of
DeepATT and DeepATT_Plus. Also, focal loss can really improve
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Table 1. Performance of five model architectures under different hyper-parameter settings on two loss functions

Model Learning rate Scheduler BCE loss Focal loss

AV-AUPR AV-AUROC AV-AUPR AV-AUROC

DeepSEA* 0.0010 None 0.26140 0.89225 0.24434 0.87009
0.0005 None 0.29214 0.90847 0.25994 0.88411

DanQ* 0.0010 None 0.33254 0.92363 0.34454 0.92875
0.0005 None 0.35921 0.93399 0.34962 0.93160

DanQ_JASPAR* 0.0010 None 0.37443 0.93827 0.37692 0.93954
0.0005 None 0.37872 0.94001 0.38441 0.94171

DeepATT 0.0010 None 0.38519 0.94232 0.39303 0.94332
0.0010 StepLR 0.39304 0.94422 0.39246 0.94432
0.0005 None 0.39267 0.94436 0.39488 0.94491
0.0005 StepLR 0.39619 0.94486 0.39522 0.94519

DeepATT_Plus 0.0010 None 0.37768 0.93932 0.38711 0.94274
0.0001 StepLR 0.38595 0.94271 0.38772 0.94266
0.0005 None 0.38406 0.94293 0.38797 0.94308
0.0005 StepLR 0.38125 0.94196 0.39324 0.94432

*Three existing deep learning constructions of DeepSEA, DanQ and DanQ_JASPAR are replicated on our own platform.

Table 2. Numbers of parameters for each neural network layer on our two novel models and three existing models

Model Convolution layer bi-RNN layer
Category
attention layer

Category dense
layer 1

Category dense
layer 2 Summation

DeepATT 123 904 6 295 552 1 348 400 40 100 (weight
share)

101 (weight
share)

7,808,057

DeepATT_Plus 123 904 6 295 552 1,348 400 40 100 (weight
share)

92 819 7,900,775

Model Convolution layer bi-RNN layer Dense layer 1 Dense layer 2 Summation

DanQ* 33 600 6 295 552 44 400 925 850 994 46 926 479

DanQ-JASPAR* 123 904 6 295 552 60 621 725 850 994 67 892 175

Model Convolution layer 1 Convolution layer 2 Convolution
layer 3

Dense layer 1 Dense layer 2 Summation

DeepSEA* 10 560 1 229 280 3 687 360 55 944 925 850 994 61,723,119

*Three existing deep learning constructions of DeepSEA, DanQ and DanQ_JASPAR are replicated on our own platform.

the performance of label-unbalanced multi-classification prob-
lem. DeepATT performs much better than other models when
using same hyper-parameter settings.

What is more, we perform the statistical analysis on five
different models. We calculate the mean and standard deviation
of predictive results, and plot charts to represent distribution
state and probability density on AUROC and AUPR values. Our
best method, DeepATT, achieves 0.94519 ± 0.0456 AUROC and
0.39521 ± 0.1897 AUPR. However, previous best method, DanQ-
JASPAR, obtains 0.94174 ± 0.0465 AUROC and 0.37935 ± 0.1914
AUPR. Our proposed method achieves low variability and high
mean value, which effectively avoid inconsistent over-fitting.

Motif analysis

We study some important non-coding DNA functional effects for
discovering functionally related motifs. Using a similar approach
described in the DeepBind method [7], we convert kernels from
convolution layer of DeepATT model to position-specific weight

matrix (PSWM) or motifs. Then, we aligned these potential
motifs to some known motifs using the TOMTOM algorithm [24].
It is a commonly used representation of patterns in biological
sequences.

From 1024 motifs learned by DeepATT, hundreds of signif-
icantly potential motifs can match known motifs (E < 0.01).
We align all motifs together into various clusters and confirm
that our model can learn a large variety of informative motifs.
We select three important functional effects, NRSF, EZH2 and
P300, in order to demonstrate functionally related motifs. We
visualize three convolution kernels with NRSF, EZH2 and P300
motif logos and display significance values of matching motif
names, as shown in Figure 4. Furthermore, NRSF, EZH2 and P300
obtain 259, 242 and 254 significantly matching known motifs (E
< 0.01) from the JASPAR2018_CORE_vertebrates_non-redundant
database, respectively.

According to motif logos, we observe that kernels of different
non-coding DNA functions hold various position-specific pref-
erence, which can help us to extract functionally related motifs.
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Figure 3. Overall AUPR and AUROC values of five different models. Left: bar charts represent AV-AUROC and AV-AUPR values of five models on two loss functions;

medium: violin charts represent distribution state and probability density on AUROC values of five models with different loss functions; right: box plot charts represent

distribution state on AUPR values of five models with different loss functions.

Figure 4. Three convolution kernels visualized with NRSF, EZH2 and P300 motif logos and significance values of matching motif names. NRSF, EZH2 and P300 obtain

259, 242 and 254 significantly matching known motifs (E < 0.01) from the JASPAR2018 database, respectively.

Figure 5. Annotated heatmap charts in different stages of the cosine similarity matrix between all query vectors in the category attention layer. Visualization of cosine

similarity matrix for 919 chromatin features: 125 DNase features, 690 TF features and 104 histone features.

Therefore, the convolution layer can capture different position-
specific information for many non-coding DNA function cate-
gories. We can take advantage of similar functionally related
motifs to mine the correlation among non-coding DNA sequence

regulatory functions. Given the large scope of data, we could
learn the large variety of motifs on important functional effects,
in order to exhaust the entire space of functionally related
motifs.
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Table 3. Comparison of five outstanding prediction tools for identifying functional effects of DNA sequences in the same dataset

DeepSEA DanQ DanQ_J DeepATT DeepATT_P

AVAUPR 0.34163 0.37089 0.37936 0.39522 0.39324
AVAUROC 0.93260 0.93837 0.94174 0.94519 0.94432

Figure 6. Dendrogram and heatmap charts for unsupervised hierarchical clustering in 919 chromatin features by corresponding 2nd stage query vectors. The red labels

represent 125 DNase I sensitivity features, the green labels represent 690 TF binding features and the blue labels represent 104 histone-mark features.

Attention analysis

Since the 2nd stage query vector is trainable, we analyze all
trained 2nd stage query vector in the category attention layer,
in order to mine correlations among 919 DNA non-coding regu-
latory functions. In the category attention module, we generate
a 919 × 919 diagonal matrix as the first-stage query vector to
train the attention layer. First, we make use of 919 randomly
generated independent 2nd stage query vector within 400 length
because the kernel of linear transformation for query vector
in the category attention layer is generated by Glorot uniform.
We calculate the cosine similarity matrix of these randomly
query vectors; however, we obtain no valid correlation infor-
mation. Then, we effectively train the 2nd staged query vector
in the category attention layer and calculate the cosine simi-
larity matrix of 919 trained the 2nd stage query vector for 919
chromatin features (125 DNase features, 690 TF features and
104 histone features). Basically, we can find out some subtle

correlations among the same function category. Moreover, we
enhance the cosine similarity matrix by the sigmoid function.
Some obvious small blocks indicate a lot of learned correlation
information between 919 DNA non-coding regulatory functions.
It needs to be stated that three major categories of various non-
coding functions are quantified as DNase I sensitivity for 0–124
items, TF binding for 125–814 items and histone-mark profile for
815–918 items. It illustrates that the cosine similarity matrix
reveals some sub-categories in the TF binding functions. We
visualize the cosine similarity matrix via annotated heatmaps
in different stages, as shown in Figure 5.

Furthermore, we make use of statistical data analysis to
explore that various query vectors in the same group are more
similar to each other, rather than to those in other groups. We
plot dendrogram and heatmap for unsupervised hierarchical
clustering in 919 chromatin features, as shown in Figure 6. It
can be clearly seen that query vectors with the same function
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Figure 7. All AUROC and AUPR curves of DeepATT for identifying DNase I sensitivity, TF binding and histone-mark profile.

are clustered in the same category. It can be ignored that few
TF binding functions are incorrectly clustered to histone-mark
profile functions. To sum up, the category attention module can
learn the correlation information between different DNA non-
coding functions. Moreover, it will be useful to find the internal
mechanism about various DNA functions. In addition, it is easy
to achieve that the attention score of RNN vectors for one specific
function can be calculated to estimate all functional targets for
different regulatory functions.

Comparison of existing predictors

We compare our novel methods with three existing outstanding
prediction tools for identifying non-coding functions of DNA
sequences, as shown in Table 3. The result data of existing
predictors are extracted from previous literatures [4, 5]. Deep-
ATT achieves the best performance of 0.39522 AV-AUPR and
0.94519 AV-AUROC, which is far better than other existing non-
coding DNA function prediction methods. Also, DeepATT_Plus
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10 Li et al.

Figure 8. Scatter-plot charts for comparing AUPR and AUROC values between

DeepATT and DanQ-JASPAR. The x-axis represents DanQ-JASPAR and the y-axis

represents DeepATT.

obtains excellent performance of 0.39324 AV-AUPR and 0.94432
AV-AUROC. According to above results, DeepATT has a signifi-
cantly improvement in the target task based on category atten-
tion layer and category dense layer.

ROC curve and PR curve

We calculate AUROC and AUPR curves of DeepATT for identifying
DNase I sensitivity, TF binding and histone-mark profile, as
shown in Figure 7. Obviously, DeepATT demonstrates state-of-
the-art performance in identifying DNA regulatory functions,
especially for identifying DHSs.

DeepATT versus DanQ-JASPAR

Also, we analyze scatter plot for comparing AUPR and AUROC
values between previous best method DanQ-JASPAR and our
best method DeepATT, as shown in Figure 8. For most of DNA
functional predictions, the performance of DeepATT is better
than that of DanQ-JASPAR which represents the state-of-the-art
method before. Moreover, AUPR value of DeepATT far surpasses
that of DanQ-JASPAR. It demonstrates that the category atten-
tion neural network layer significantly improves robustness,
versatility and precision of DeepATT for identifying functional
effects of DNA sequences.

Discussion
The contribution of our novel model can be seen as follows.
First, we design two modules for feature extraction, including
convolution layer and bi-directional recurrent layer. According to
this task, we can capture regulatory motifs. Moreover, we design
the category attention module for feature selection. According to
this task, we can capture corresponding valid feature represen-
tations for different DNA non-coding regulatory functions.

Importantly, category attention improved from multi-head
self-attention layer is a novel module for multi-label classifica-
tion. According to the category attention module, we can mine
correlations among different non-coding DNA functions. Also,
category dense improved from locally connected dense layer is
a module to adapt the category attention module. It can enable
specific functions only to depend upon corresponding features.

Moreover, our novel model can greatly reduce the number
of parameters. Attention mechanism can determine relevant
features for each binary target, and locally connected layer may
eliminate all unnecessary connections for specific binary target.
It is a great contribution to reduce the parameter size and also
ensure the prediction accuracy.

Conclusion
We propose a computational approach based on a hybrid DNN,
DeepATT, for modeling the source of DNA variability. In our
model, the attention mechanism is really efficient for multi-label
classification of DNA non-coding function prediction. Therefore,
we design a category attention layer and a category dense layer
in order to select corresponding valid features and distinguish
specific representations of different DNA functions. DeepATT
provides novel insights into non-coding genomic regions, which
contributes to understand the potential function of complex
disease- or trait-associated genetic variants. DeepATT performs
significantly better than other existing outstanding prediction
tools for identifying DNA functions and even more reduces
the parameter size on the basis of ensuring the prediction
accuracy.

What is more, there are several avenues of future interests to
explore. First, the attention mechanism is a really novel module
for DNA function prediction task. In our model, we can calcu-
late the attention score to approximately find the functional
site in DNA sequence that is very useful for wet experiments.
Second, we can add an embedding layer in the front of existing
model, like word2vec [25]. It can learn internal similarities of
different sub-sequences, which may improve neural network
performance. Third, we can do de-redundancy for the original
dataset. Current data are too massive, so it takes a few days to
train one model.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/22/3/bbaa159/5890498 by H

arvard Law
 School Library user on 13 M

ay 2022



DeepATT 11

Key points
• We propose a hybrid DNN method with four built-

in neural network layers, DeepATT, for identifying
919 regulatory functions on nearly 5 million DNA
sequences. We firstly design a category attention layer
and a category dense layer in order to distinguish
specific representations of different DNA functions.

• We replicate two state-of-the-art models, DeepSEA
and DanQ, in order to compare different model archi-
tectures with our novel model construction in var-
ious hyper-parameters. DeepATT performs signifi-
cantly better than other prediction tools for identify-
ing DNA functions.

• Our novel model mine important correlation among
different DNA functions according to the category
attention module. The attention score for one specific
function can be used to estimate all functional targets
for different regulatory functions.

• Our novel model reduces the number of parameters
by attention mechanism, locally connected layer and
weight-sharing strategy. The attention mechanism
determines relevant characteristics for each binary
target, and the locally connected layer eliminates all
unnecessary connections for specific DNA functions.
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